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Single-bubble sonoluminescence: Shape stability analysis of collapse dynamics
in a semianalytical approach

Vladislav A. Bogoyavlenskiy*
Low Temperature Physics Department, Moscow State University, 119899 Moscow, Russia

~Received 29 December 1999; revised manuscript received 21 April 2000!

This paper theoretically analyzes the hydrodynamic shape stability problem for sonoluminescing bubbles.
We present a semianalytical approach to describe the evolution of shape perturbations in the strongly nonlinear
regime of violent collapse. The proposed approximation estimating the damping rate produced by liquid
viscosity is used to elucidate the influence of the collapse phase on subsequent evolution of the Rayleigh-
Taylor instability. We demonstrate that time derivatives of shape perturbations grow significantly as the bubble
radius vanishes, forming the dominant contribution to destabilization during the ensuing bounce phase. By this
effect the Rayleigh-Taylor instability can be enhanced drastically, yielding a viable explanation of the upper
threshold of driving pressure experimentally observed by Barberet al. @Phys. Rev. Lett.72, 1380~1994!#.

PACS number~s!: 47.20.2k, 78.60.Mq
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I. INTRODUCTION

In the last decade, a significant impulse to theoretical
experimental studies of the bubble collapse problem w
given by the discovery of the single-bubble sonolumin
cence phenomenon@1–4#. If a gas bubble in water is sub
jected to a periodic spherical sound wave of ultrasonic
quency, the acoustic energy can be concentrated by ove
orders of magnitude in very small volume. During the ra
efaction part of the acoustic cycle the bubble absorbs en
from the sound wave, and the subsequent compressional
tion of the sound field causes the collapse; the resulting
citation and heating of the gas inside the bubble may lea
UV-light emission of picosecond duration. One of the r
markable features of sonoluminescing bubbles observed
Putterman and co-workers is high sensitivity of the lig
emission to experimental conditions such as forcing pr
sure, ambient bubble radius, water temperature, and typ
gas mixture@4–8#. Optical measurements reveal differe
dynamic regimes of bubble behavior, and stable sonolu
nescence is found only in a narrow range of external par
eters. Particularly puzzling is the dependence on the am
tude of the forcing pressure where an upper threshold ef
was reported@5#. Usually, the emission of light takes plac
when the amplitude of the sound wave exceeds the edg
sonoluminescence; if the sound intensity is increased furt
beyond a threshold, the light is quenched.

In order to describe the nontrivial experimental resu
Brenneret al. introduced the concept that the observed up
threshold marks the onset of shape instabilities on the bu
surface@9,10#. On the basis of linear hydrodynamic analys
they argued that the strongest destabilization develops w
the bubble radius reaches its minimum. The acceleratio
compressed gas into the surrounding liquid is enormous,
tivating the Rayleigh-Taylor instability that causes expon
tial growth of shape perturbations on time scales of less t
1029 s @10#. This theory, supported by theoretical@11–13#
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and experimental@14,15# investigations, was nethertheles
criticized by Putterman and co-workers as to its backgrou
they claimed that under experimental conditions the liq
viscosity would quench the shape perturbations, so it is n
essary to find some mechanism other than the Rayle
Taylor instability that results in the quenching of sonolum
nescence@7,8# ~different points of view on the problem ar
published in Refs.@16,17#!. The posed discrepancies we
recently examined by numerical simulations of the full h
drodynamic model considering the viscous nonlocal effe
@18,19#. Although these studies have demonstrated a satis
tory agreement between the exact hydrodynamics and its
proximation @9,10#, further theoretical clarifications stil
seem desirable.

In the present work, we propose a semianalytical
proach to clarify the shape stability problem for sonolum
nescing bubbles. Our goal is formulated as a detailed inv
tigation of shape perturbations in the region of the viole
collapse preceding the intensive development of
Rayleigh-Taylor instability. For this purpose, analytical s
lution of the Rayleigh-Plesset equation modeling the liqu
viscosity@20# is used to derive the perturbation dynamics
a single relation~distortion amplitude vs bubble radius! ap-
propriate for subsequent theoretical analysis. We dem
strate that time derivatives of the shape perturbations
grow drastically as the bubble collapses, giving the domin
contribution to posterior evolution of the Rayleigh-Tayl
instability during the shocklike bounce. This allows us
elucidate the destabilization mechanism leading to the up
threshold effect@5#, and also to estimate the influence
liquid viscosity on the shape stability. The paper is organiz
as follows. In Sec. II, we propose and justify the analytic
approximation of the bubble dynamics for the violent co
lapse phase. The subject of Sec. III is the derivation of
perturbation dynamics for collapsing bubbles. In Sec. IV,
analyze evolution of the shape perturbations during the
lapse, and then give a phenomenological description of
Rayleigh-Taylor instability development leading to th
quenching of sonoluminescence. Finally, Sec. V formulate
summary of the results obtained.
2158 ©2000 The American Physical Society
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II. BUBBLE DYNAMICS

A. The Rayleigh-Plesset equation

Since Lord Rayleigh treated the collapse of an empty c
ity in an inviscid liquid@21#, much refinement has been don
in the theory of bubble dynamics@22#. The main step was the
introduction of liquid viscosity, surface tension, and variab
external driving pressure by Plesset@23#. Following this for-
mulation, the motion of the bubble wallR(t) obeys the rela-
tion ~named the Rayleigh-Plesset equation!

rS R̈R1
3

2
Ṙ2D14m

Ṙ

R
1

2s

R
1S 11

R

c

d

dtD ~P01Pa2Pg!

50. ~1!

Here overdots denote time derivatives;r,m, and s are the
density, shear viscosity, and surface tension coefficient of
liquid, respectively;c is the sound speed in the liquid;P0
5const is the ambient hydrostatic pressure;Pa is the driving
acoustic pressure; andPg is the gas pressure inside th
bubble. For sonoluminescing bubbles, the external so
field Pa represents a spatially homogeneous, standing w

Pa52Pa
0 sin 2pvt, ~2!

where Pa
0 is the amplitude andv is the frequency of the

acoustic field.
A key aspect of modeling the Rayleigh-Plesset dynam

is the specification of the internal pressurePg . The problem
consists in the complexity of the thermofluid mechani
processes such as heat transport at the bubble-liquid inte
and formation of shock waves inside the bubble@24–29#. It
should be mentioned, however, that in an early paper Trill
@24# concluded that these shock waves would not sign
cantly affect the pressure variation at the bubble wall, wh
is the primary determinant of the radial motion; as also de
onstrated by Prosperettiet al. @25,26#, at moderate pressur
amplitudes the temperature variations of the liquid near
bubble are negligible. As a consequence, at conditions
evant to sonoluminescing bubbles the gas pressurePg can be
considered to obey the van der Waals process equation,
ing a rather precise resemblance between theoretical cu
R(t) and experimentally obtained data@30#:

Pg5P0S R0
32h3

R32h3D k

. ~3!

HereR0 is the ambient bubble radius,h is the collective hard
core van der Waals radius, andk is the effective polytropic
exponent varying from 1~the isothermal condition! to the
ratio of specific heatsg ~the adiabatic condition!.

In Fig. 1, we present a typical example of the dynam
R(t) simulated for an air bubble in water; the values of p
rameters in Eqs.~1!–~3! are chosen to satisfy an experime
tal regime where sonoluminescence is observed@31#. For one
acoustic periodT537.7 ms, one can resolve three distin
stages of the bubble dynamics. During the first part of
acoustic cycle, 0,t(ms)<17.5, the bubble radius expand
from its ambient valueR054.5 mm, to the maximumRmax
547.1 mm. Then the collapse phase, 17.5,t(ms)<21.8,
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takes place; at the end of the compression, a sharp pea
UV light is emitted as the bubble radius approaches the m
mum Rmin50.56 mm. After the collapse, there is the stag
of weak secondary oscillations, 21.8,t(ms)<T; during this
phase, the bubble dissipates the energy accumulated from
sound field by viscous damping, and its radius approac
the ambient valueR0 by the beginning of the next acoust
cycle.

Among the three stages of the bubble dynamics, we fo
on the collapse phase responsible for significant accum
tion of sound energy. In order to discuss this region in det
we rewrite Eq.~1! as

2rR̈R5~Pvel1Pext1Psur!2~Pv is1Pgas!, ~4!

where

Pvel[
3rṘ2

2
,Pext[P01Pa1

RṖa

c
,Psur[

2s

R
, ~5!

Pv is[2
4mṘ

R
,Pgas[Pg1

RṖg

c
. ~6!

In this representation, we separate the terms in Eq.~1! that
either accelerate (Pvel ,Pext ,Psur) or decelerate (Pv is ,Pgas)
the bubble wall motion. The overall picture demonstrati
the contributions of the accelerating and decelerating te
for the discussed Rayleigh-Plesset dynamics~Fig. 1! is sum-
marized by Fig. 2:~a! shows the dependenceR(t) during the
collapse phase; in plots~b! and~c!, we present the evolution
of pressures Pvel ,Pext ,Psur ,Pv is , and Pgas. As

FIG. 1. DynamicsR vs t for an air bubble in water during one
acoustic periodT. Numerical simulation of the Rayleigh-Pless
equation corresponds to an experimental regime where sonol
nescence is observed:R054.5 mm, P051 atm, Pa

051.325 atm,
and v526.5 kHz. The material constants arer51 g/cm3, m
50.01 g/cm s, s573 g/s2, c51481 m/s, R0 /h58.5, and k
51.4.
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FIG. 2. Collapse phase@17.5,t(ms)<21.8# of the Rayleigh-Plesset equation simulated with the same parameters as in Fig. 1;~a! bubble
dynamicsR vs t; ~b! log10P/P0 vs t for accelerating pressuresPvel , Pext , andPsur ; ~c! log10P/P0 vs t for decelerating pressuresPv is and
Pgas. Left plots present the regions of weak and violent collapses; right plots, the bounce region in expanded time scale.
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illustrated by the auxilary lines, the collapse region can
conditionally subdivided into three intervals:~i! the weak
collapse,~ii ! the violent collapse, and~iii ! the bounce; within
these intervals, thePext ,Pvel , and Pgas pressure terms, re
spectively, are dominant in Eq.~4!.

B. The violent collapse phase

Since our goal is the investigation of the bubble sha
stability during the violent collapse phase, we need to f
mulate an adequate approximation of the dynamicsR(t) in
this region. From Fig. 2, the termPvel gives the dominant
contribution to the bubble wall acceleration so the dynam
R(t) principally follows from the classic Rayleigh equatio
@21#:

R̈R1
3

2
Ṙ250. ~7!

To derive the next approximation, we take into considerat
the viscosity termPv is , which dominates among the dece
erating pressures until the shocklike bounce emerges@Fig.
2~c!#. As a result, we introduce the following simplificatio
of the Rayleigh-Plesset equation~see Appendix A!:

R̈R1
3

2
Ṙ21

4m

r

Ṙ

R
50, ~8!

with initial conditions

R$t5t i%5Ri ,Ṙ$t5t i%52Vi . ~9!

Here t i ,Ri , and Vi are the initial time, bubble radius, an
bubble wall velocity, respectively, related to the beginning
the violent collapse (Pvel;Pext); to improve the fit, the ve-
locity Vi should slightly exceed its actual value2dR/dt$t
5t i%, as discussed in Appendix A.
e

e
-

s

n

f

The introduced approximation of the Rayleigh-Plesset
namics@Eqs.~8! and ~9!# is integrable, giving the analytica
dependence between the bubble radius and time@20#:

4m

rRi
2 ~ t2t i !5

1

4
~12R̃2!2

a

3
~12R̃3/2!1

a2

2
~12R̃!

2a3~12R̃1/2!2a4ln
a1R̃1/2

a11
, ~10!

whereR̃[R/Ri is the dimensionless bubble radius anda is
the parameter of liquid viscosity defined by the relation

a[
rRiVi

8m
21. ~11!

In the case ofa.0, Eq. ~10! describes the dynamics o
viscous collapse,

Ṙ52S 8m

r D 11aR̃21/2

R
, ~12!

which satisfies the Rayleigh scaling law as the bubble rad
vanishes:

R}~ tC2t !2/5,tC5const. ~13!

C. The bounce region

As the gas inside the bubble is compressed to the h
core radiusR→Rmin'h, the violent collapse phase is halte
abruptly, and the shocklike bounce emerges. During
very short region~as shown by Fig. 2, it lasts approximate
10210 s) the bubble wall velocity falls from superson
speeds down to zero, releasing the energy stored in the c
pressed gas through emission of sound waves. The co
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sponding dynamics is governed almost exclusively by
extended gas pressurePgas, which gives the dominant con
tribution to the Rayleigh-Plesset equation:

rR̈R5Pgas5S 11
R

c

d

dtD Pg , ~14!

where Pg obeys Eq.~3!. As pointed out by Lo¨fstedt et al.
@30#, this relation yields satisfactory description of th
bubble dynamicsR(t) for a time intervalt in the vicinity of
the instant of collapse, where the value oft is estimated as

t'
Rmin

~2dR/dt!max
;

h

c
. ~15!

III. STABILITY EQUATIONS

A. General formulation

Let us consider an initially spherical bubble immersed
an infinite viscous liquid. In order to study the problem
shape stability, we assume a fluctuation field that pertu
the bubble-liquid interface@32#. This field of perturbations is
represented by spherical Legendre polynomials as

R̂~ t,u,w!5R~ t !1 (
n52

`

an~ t !Yn~u,w!. ~16!

Here R(t) and R̂(t,u,w) are the undistorted and distorte
bubble radii, respectively (u and w are parameters of th
spherical coordinate system whose origin is at the cente
the bubble!; functionsYn(u,w) are the spherical harmonic
of degreen5(2, . . . ,̀ ); the distortion amplitudesan(t) are
considered to be small,uan(t)u!R(t). The classic example
of a surface instability is the growth of perturbations on
plane interface separating a light liquid from a heavier o
into which it is being uniformly accelerated; this is genera
known as the Rayleigh-Taylor instability@33#.

The instabilities that arise on the surface of an acou
cally driven bubble are accompanied by effects related to
spherical geometry@34–38#. For the simplest case of invisci
liquids, the perturbation dynamics was derived by Ples
@34#:

än1
3Ṙ

R
ȧn1~n21!S 2

R̈

R
1

~n11!~n12!s

rR3 D an50.

~17!

The influence of liquid viscosity, being neglected in Plesse
derivation, was taken into account by Prosperetti@39#. The
intrinsic difficulty of this consideration is that viscou
stresses produce vorticity of the liquid in neighborhood
the bubble wall; this vorticity spreads by both convective a
diffusive processes and the problem becomes strongly n
local:
e

s

of

e

i-
e

et

s

f
d
n-

än1S 3Ṙ

R
2

2~n21!~n11!~n12!m

rR2 D ȧn

1~n21!S 2
R̈

R
1

~n11!~n12!~s12mṘ!

rR3 D an

2
n~n11!Ṙ

R2 E
R

`Rn

r n S 12
R3

r 3 D T~r ,t !dr

1
n~n11!~n12!m

rR2
T~R,t !

50. ~18!

Here the fieldT5T(r ,t), the toroidal component of the liq
uid vorticity, obeys the diffusion equation

]T

]t
1ṘR2

]

]r S T

r 2D 5
m

r S ]2T

]r 2
2n~n11!

T

r 2D ~19!

and the boundary condition at the bubble wall

T~R,t !1
2

RER

`

T~r ,t !
Rn

r n
dr

5
2

n11
S ~n12!ȧn2~n21!

Ṙ

R
anD . ~20!

This exact formulation of the viscous problem is too co
plex for detailed analysis, although some cases of the
numerical integration of Eqs.~18!–~20! were recently re-
ported @18,19#. In order to make the model local and mo
appropriate for analytical investigation, we apply several r
sonable simplifications as follows.~i! The surface tension
can be excluded sinces!2mṘ for collapsing bubbles in
water~this inequality, equivalent toPsur!Pv is , is illustrated
by Fig. 2 in the previous section!. ~ii ! The integral in Eq.~18!
does not contain viscous terms and, therefore, only resul
tiny increments to coefficientsȧn and an , in comparison
with 3Ṙ/R and2R̈/R, respectively.~iii ! As an issue of sim-
plification, one needs to approximate the viscous damp
rate caused by the vorticity field. For this purpose,
boundary-layer type model was proposed by Prosperetti@40#
and examined by Brener and co-workers@9,10#. According
to this approach, considerable vorticity is localized within
small boundary layer of thicknessd around the bubble; then
the integral in Eq.~20! is written as 2dT(R,t)/R, so the
vorticity at the bubble wall follows from the expression

T~R,t !5
2

~n11!~112d/R!
S ~n12!ȧn2~n21!

Ṙ

R
anD ,

~21!

where the value of the parameterd is given by

d5minHA m

rv
,

R

2nJ . ~22!
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Although the boundary-layer approximation is based
rather questionable assumptions~a relevant discussion i
published in Refs.@16,17#!, its application leads to satisfac
tory estimations of the viscous damping~see @18,19# and
Appendix B!. In this work, we consider the limiting case o
a thin layer related to maximal viscous dissipation, implyi
the vorticity field as given in Eq.~21! with d→0.

By our three considerations~i!–~iii !, the system of Eqs
~18!–~20! is reduced, yielding the following relation for th
perturbation dynamics:

än1S 3Ṙ

R
1

2m~n12!~2n11!

rR2 D ȧn

1~n21!S 2
R̈

R
1

2mṘ~n12!

rR3 D an

50. ~23!

B. Perturbation dynamics of the violent collapse

In order to analyze the shape stability problem in the v
lent collapse region, we combine the dynamical systeman
5an(R,t) and t5t(R) @Eqs. ~23! and ~10!# to derive the
single relationan5an(R). Since Eq.~10! gives the bubble
dynamics inverted@ t(R) instead ofR(t)#, we need to apply
the formulas of conversion

Ṙ5S dt

dRD 21

, ~24!

ȧn5S dt

dRD 21

an8 , ~25!

R̈52S d2t

dR2D S dt

dRD 23

, ~26!

än5S dt

dRD 22

an92S d2t

dR2D S dt

dRD 23

an8 , ~27!

where primes denote the radial derivatives:an8[dan /dR and
an9[d2an /dR2. The expressions fordt/dR andd2t/dR2 can
be obtained from theR differentiation of Eq.~10!:

dt

dR
52S r

8m D R

11aR̃21/2
, ~28!

d2t

dR2
52S r

8m D11~3a/2!R̃21/2

~11aR̃21/2!2
. ~29!

Finally, the substitution of Eqs.~28! and~29! into Eqs.~24!–
~27! and then into Eq.~23! gives the following differential
relation for the perturbation dynamics~for details, see Ap-
pendix C!:
n

-

~11aR̃21/2!
d2an

d~ lnR̃!2
1S 11

a

2
R̃21/22

~n12!~2n11!

4 D
3

dan

d~ lnR̃!
1~n21!S 3a

2
R̃21/22

~n22!

4 Dan

50. ~30!

IV. RESULTS AND DISCUSSION

A. Stability analysis of the violent collapse

1. Theoretical investigation

In the previous section, we have derived Eq.~30!, which
governs the perturbation dynamics in the violent collap
region. Before we proceed to numerical simulations of t
differential relation, some of its asymptotic properties can
pointed out theoretically.

~i! Let us take the inviscid limitaR̃21/2@1; in this case,
Eq. ~30! is reduced to

d2an

d~ lnR̃!2
1

1

2

dan

d~ lnR̃!
1

3~n21!

2
an50. ~31!

Then, finding a solution asan5exp(j ln R̃)5R̃j (j is an un-
known constant!, one obtains

j56 i
A24~n21!

4
2

1

4
. ~32!

As a result, the family of solutions is represented as

an5AR̃21/4 sin@~v0ln R̃!1w0#, ~33!

whereA andw0 are parameters determined by initial cond
tions, andv0[A24(n21)21/4. By Eq.~33!, the distortions
an oscillate on the logarithmic scale ofR̃; the amplitude of
the oscillations slightly increases as the bubble collaps
obeying the relation

maxuanu}R̃21/4. ~34!

~ii ! In the opposite case of high viscosityaR̃21/2!1, Eq.
~30! is transformed to

d2an

d~ ln R̃!2
1S 12

~n12!~2n11!

4 D dan

d~ ln R̃!

2
~n21!~n22!

4
an50. ~35!

Repeating the same procedure to find a solution,an5R̃j,
leads to

j56
1

2
AS ~n12!~2n11!

4
21D 2

1~n21!~n22!

1
1

2 S ~n12!~2n11!

4
21D , ~36!
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which allows us to obtain the following approximation fo
the roots, due to the inequality (n21)(n22)!@(n12)(2n
11)/421#2:

j1'
~n12!~2n11!

4
21,j2'2

~n21!~n22!

~n12!~2n11!24
.

~37!

As a result, the family of solutions is

an5AR̃j11BR̃j2, ~38!

wherej1 andj2 are defined by Eq.~37!, and the parameter
A andB are determined by initial conditions. This function
dependence means that the distortionsan obey a power-law
behavior of R̃, giving the following scaling as the bubbl
radius vanishes:

an}R̃j2. ~39!

However, the absolute values of the negative rootj2 are
small for low modesn ~e.g., uj2u rises from 0 to 0.2 asn
varies from 2 to 6!, so the growth of perturbations by Eq
~39! is rather weak, as in the inviscid limit@Eq. ~34!#.

2. Numerical simulations

To give the overall picture for the perturbation dynam
an(R̃), results of the numerical simulations of Eq.~30! are
presented in the range 0.01<R̃<1 ~in logarithmic scale of
the dimensionless bubble radiusR̃) covering all the compres
sion stages of sonoluminescing bubbles.

In Fig. 3, we illustrate the evolution of the quadrupo
modea2 for various values of the viscosity parametera; the
initial conditions for the simulation are chosen asa25a2

0 and

FIG. 3. Perturbation dynamics for quadrupole modea2 /a2
0 vs

log10R̃ at various values of viscosity parametera51, 2, 4, 10,
100, and` ~shown for each curve! in the violent collapse region

Initial conditions area25a2
0, da2 /dR̃50 asR̃51.
da2 /dR̃50 atR̃51. The calculated curvesa2(log10R̃) dem-
onstrate a nonlinear oscillating behavior, where the succ
sive increase of liquid viscosity~decrease ofa) results in a
monotonic damping of the distortion amplitude. Howev
this viscous damping yields a substantial contribution to
perturbation dynamics only ifa,10; this inequality is not
valid for sonoluminescing bubbles~where a;100 due to
@41#!, so the influence of viscosity on the shape stability c
be considered as negligible in the violent collapse region

The perturbation dynamicsan(log10R̃) for different
modesn52, . . . ,6 andfixed viscosity parametera5100 is
summarized by Fig. 4; the initial conditions atR̃51 are the
same as in Fig. 3. As one can see by comparing Figs. 3
4, the high harmonicsn>3 qualitatively resemble the dy
namics of the quadrupole modea2: the obtained curves
an(log10R̃) oscillate with a slight increase of amplitude as t
bubble radiusR̃ diminishes, obeying Eq.~34!.

B. The Rayleigh-Taylor instability

The stability analysis of the violent collapse region pr
sented above has shown that the growth of the perturba
amplitude is rather weak@Eq. ~34!#, resulting in an insignifi-
cant contribution to the shape destabilization. This raises
following problem: does it mean that the influence of t
collapse phase on subsequent development of the Rayle
Taylor instability is infinitesimal? In order to answer th
question posed, let us study the transition from the viol
collapse to the bounce in detail. When the bounce ph
emerges~see Sec. II C and Fig. 2!, the bubble dynamics
transforms abruptly from collapsing@Eq. ~10!# to shock-

FIG. 4. Perturbation dynamicsan /an
0 vs log10R̃ for modesn

52, . . . ,6 ~shown for each curve! in the violent collapse region
Parameter of liquid viscositya is fixed, a5100. Initial conditions

arean5an
05constn, dan /dR̃50 asR̃51.
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like @Eq. ~14!#. Denoting the moment of the transformatio
t5t* , we write the initial conditions for the posterior evolu
tion of perturbations as

an$t5t* %5an* ,ȧn$t5t* %5ȧn* , ~40!

wherean* andȧn* are the value and its time derivative of th
distortionan(t), corresponding to the end of the violent co
lapse region.

From Figs. 3 and 4, the absolute values of perturbati
an* are comparable toan

0 . To find ȧn* , we use the relation

ȧn* 5
1

Ri
S dR

dt D S dan

dR̃
D as t→t* , R̃→Rmin

Ri
. ~41!

The dynamics of the radial derivativesdan /dR̃ vs log10R̃
for modesn52, . . . ,6 ispresented in Fig. 5~obtained by the
R̃ differentiation of Fig. 4!. The curvesdan /dR̃(log10R̃) are
characterized by strongly nonlinear oscillations with t
rapid increase of amplitude as the bubble radius vanishes
values ofudan /dR̃u achieve 500an

0 for compression ratioR̃
of the order of 1022. For sonoluminescing bubbles, the c
efficient ofdan /dR̃ in Eq. ~41! exceeds 108 s21 @42#, so the
absolute values ofȧn* can reach 1011an

0 s21 by the final
stage of the violent collapse. As a consequence, on the
scalet;10210 s @Eq. ~15!# the following inequality is valid:

uȧn* ut@an* . ~42!

This relation means that the dominant contribution to
Rayleigh-Taylor instability stems from the time derivativ
of the distortionsȧn* .

FIG. 5. Dynamics of radial derivativesdan /dR̃ vs log10R̃ for
modesn52, . . . ,6 ~shown for each curve! in the violent collapse
region. Parameter of liquid viscositya is fixed, a5100. Initial
conditions are the same as in Fig. 4.
s

he

e

e

The crucial role of the derivative termsȧn* on the shape
destabilization is elucidated by Fig. 6. We present evolut
of the quadrupole modea2(t) during the bounce phaset
P@0,t# ~the momentt50 corresponds to the end of the vio
lent collapse phase!. These are results for an air bubble
water: the ambient bubble radiusR054.5 mm, ambient hy-
drostatic pressureP051 atm, and driving frequencyv
526.5 kHz are fixed; the amplitude of the forcing pressu
Pa

0 is varied in the range 1.2<Pa
0 (atm)<1.4. We assume

the bubble dynamicsR(t) to obey Eq.~10! during the violent
collapse and then Eq.~14! during the bounce phase; the p
rametersa2* andȧ2* are calculated with the use of Figs. 4 an

5. Two plots are composed:~a! the initial time derivativeȧ2*

is ignored and~b! the term ȧ2* is taken into consideration
@Eq. ~41!#. The figure shows the significant effect of the in
tial time derivatives: at the end of the bounce intervalt5t,
the values of the quadrupole modea2 with identical values
of Pa

0 differ by more than an order of magnitude. The diffe
ence increases with the forcing pressure amplitude: forPa

0

51.4 atm the ratioa2$ȧ2* Þ0%/a2$ȧ2* 50% exceeds 30.
The results obtained allow us to discuss the developm

of the Rayleigh-Taylor instability quantitatively. The disto
tion value of the distortiona2

0 relevant to the beginning o
the collapse phase can be estimated as a microscopic
tuation formed by a random displacement of magnitu
;1 nm ~several diameters of the water molecule!. Then the
crucial perturbation of the initially spherical bubblea2

cr

;Rmin'0.6 mm is related to the increase ofa2 by a factor
of ;600 during the bounce. From Fig. 6~a!, the curvesa2(t)

FIG. 6. Perturbation dynamics for quadrupole modea2 /a2
0 vs

t/t demonstrating intensive development of the Rayleigh-Tay

instability in the bounce region; initial derivativesȧ2* are either
ignored ~a! or taken into consideration~b!. These are results fo
various values of acoustic field amplitudePa

0 (atm)51.20, 1.25,
1.30, 1.35, and 1.40~shown for each curve!. Ambient bubble radius
R0, ambient hydrostatic pressureP0, and driving frequencyv are
fixed: R054.5 mm, P051 atm, andv526.5 kHz.



de

in

o
lo
l-
s
b

e
os
n

-
i-
ha
ry

ts
u

he
es
e

di

s

-
tr

s
in
on

d

-
e
es

n
t

up
e

r.
ul

h-
-

ir-

m in

g
ics
the
-

of
, its

an

the

by
r-
icity

n-
of

-
r
e ex-
fi-
m

the
n of
er-
on-

p-
n

of

PRE 62 2165SINGLE-BUBBLE SONOLUMINESCENCE: SHAPE . . .
cannot achieve this threshold even asPa
051.4 atm where no

sonoluminescence was observed@8#. In contrast to the plot
~a!, the distortionsa2(t) shown in Fig. 6~b! increase by three
orders of magnitude, so that should result in almost full
struction of the initial bubble sphericity atPa

0>1.35 atm,
i.e., in the region where the upper threshold of the driv
amplitudePa

0 was experimentally reported@5#.

C. Coexistence of different instability mechanisms

Although the main reason for the shape destabilization
sonoluminescing bubbles consists in the strongest deve
ment of the Rayleigh-Taylor instability in the instant of co
lapse, some additional mechanisms also coexist, such a
parametric and afterbounce instabilities distinguished
Brenner and co-workers@9,10#. The first arises due to th
accumulation of perturbations from sphericity over many
cillation periods, similar to Faraday waves. The seco
grows during the rapid afterbounces@secondary weak oscil
lations~Fig. 1!# that bubbles execute after the point of min
mal radius. The increments of the destabilization mec
nisms to the Rayleigh-Taylor instability lead to a ve
complex structure for the stability boundary@8–10,17–19#.
Since a detailed quantitative analysis of these incremen
terms of our semianalytical approach seems rather diffic
we propose a phenomenological description as follows.

From our studies, the dominant contribution to t
Rayleigh-Taylor instability comes from the time derivativ
of the surface distortionȧn* at the end of the violent collaps

phase. As shown in Fig. 5, the derivative termsȧn(R̃) oscil-
late extremely nonlinear as the bubble radiusR̃ diminishes.
As a consequence, an infinitesimal shift in the initial con
tionsan

0[an$R̃51% andȧn
0[ȧn$R̃51% related to the begin-

ning of the collapse may lead to drastic change of the ab
lute values ofȧn* ~by several orders of magnitude! or even to

sign inversion. These initial conditionsan
0 andȧn

0 are formed
during the oscillation periodT between the collapse mo
ments and, therefore, are strictly influenced by the parame
and afterbounce destabilization mechanisms.

V. SUMMARY

~i! We have shown that the general Rayleigh-Ples
equation governing the dynamics of sonoluminesc
bubbles allows an analytically integrable approximati
~which takes into account the liquid viscosity term! in the
violent collapse region.

~ii ! Based on the boundary-layer approach, we have
rived a single differential relation~distortion amplitude vs
bubble radius! for the perturbation dynamics during the vio
lent collapse. Theoretical and numerical investigations rev
strongly nonlinear oscillations of the distortion amplitud
~weakly dependent on the liquid viscosity! as the bubble ra-
dius vanishes.

~iii ! We have estimated the contribution of the viole
collapse phase to the posterior intensive development of
Rayleigh-Taylor instability, and then have elucidated the
per threshold effect, discussing the increments from param
-
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ric and afterbounce destabilization.
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APPENDIX A: DYNAMICS OF VISCOUS COLLAPSE

The proposed simplification of the general Rayleig
Plesset dynamics@Eqs.~8! and~9!# may need additional jus
tification, since the external pressurePext exceeds~or is
comparable with! the viscous termPv is during the violent
collapse region~Fig. 2!. Despite the fact that it seems des
able to includePext in the approximation proposed@Eq. ~8!#,
we have nevertheless ignored the external pressure ter
our consideration for the following reasons.

~i! The functionPext(R) is approximately constant durin
the whole collapse so its increment to the bubble dynam
R(t) can be compensated by an insignificant increase of
initial velocity Vi in Eq. ~9!, in contrast to the strongly non
linear behavior of the viscous contributionPv is as the bubble
approaches the minimum.

~ii ! The viscous pressurePv is is the only term in the
Rayleigh-Plesset equation responsible for the dissipation
sound energy until the bounce emerges and, therefore
consideration is preferable to that ofPext .

~iii ! The approximation introduced allows us to obtain
analytical solution of the bubble dynamics@Eq. ~10!#; that
yields the opportunity for subsequent detailed analysis of
shape stability problem.

APPENDIX B: BOUNDARY-LAYER APPROXIMATION

The boundary-layer approximation was criticized
Putterman and Roberts@16# since, as they claimed, it unde
estimates the viscous damping rate produced by the vort
field. They argued that the thicknessd of the boundary layer
can drastically exceed the value estimated by Eq.~22!, espe-
cially when the bubble reaches its minimum, yielding e
hanced dissipation within the layer. Further investigations
the problem@18,19# stimulated by this criticism have re
vealed that the actual thicknessd is several times greate
than the assumed one, but the discrepancies between th
act model and itsd approximation are nevertheless insigni
cant. The solution of the seeming paradox follows fro
simple analysis of Eq.~21!: increase of the parameterd re-
sults in a monotonic decrease ofT(R,t), i.e., the viscous
dissipation caused by the liquid vorticity decreases as
boundary layer is enhanced. In other words, consideratio
the vorticity localized cannot underestimate, but rather ov
estimates, the influence of liquid viscosity. The reported c
ditions related to slight underestimation of the viscous dam
ing rate@18,19# are easily explained as follows. The criterio
by which one can determine if thed model overestimates~or
underestimates! the viscosity effect states that the sign
T(R,t) is the same as~or opposite to! the sign of
*R

`T(r ,t)/r ndr. The function T(r ,t) usually demonstrates
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the oscillating behavior ofr with diminishing amplitude@18#,
so in most cases the signs are the same and, therefore
boundary-layer type approximation is adequate. Some
cases when the equality of the signs is broken, relevant to
observed discrepancies between the models, correspon
the afterbounce phase of the bubble dynamics@18#. Since in
this paper we are focused on the collapse and on the bou
the application of thed model to our stability analysis seem
rather reasonable.

APPENDIX C: DERIVATION OF PERTURBATION
DYNAMICS

The substitution ofdt/dR and d2t/dR2 from Eqs. ~28!
and ~29! into Eqs.~24!–~27! yields

Ṙ52S 8m

r D 11aR̃21/2

R
, ~C1!

ȧn52S 8m

r D 11aR̃21/2

R
an8 , ~C2!

R̈52S 8m

r D 2 ~11aR̃21/2!@11~3a/2!R̃21/2#

R3
, ~C3!
r-

J.

c

J.

,

er

.

ys
the
re
he

to

ce,

än5S 8m

r D 2 ~11aR̃21/2!2

R2
an9

2S 8m

r D 2 ~11aR̃21/2!@11~3a/2!R̃21/2#

R3
an8 .

~C4!

Then, the combination of Eqs.~C1!–~C4! with Eq. ~23! gives
the following:

R2~11aR̃21/2!an91RS 21
3a

2
R̃21/22

~n12!~2n11!

4 Dan8

1~n21!S 3a

2
R̃21/22

~n22!

4 Dan50. ~C5!

Finally, the variable replacementR↔ ln R̃ as

dan

dR
5

1

R

dan

d~ lnR̃!
, ~C6!

d2an

dR2
5

1

R2 S d2an

d~ lnR̃!2
2

dan

d~ ln R̃!
D ~C7!

allows us to obtain Eq.~30!.
ys.
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